![]() Wind turbine tower base assembly with detachable tower base rings
专利摘要:
A tower base ring assembly is provided for securing a wind turbine tower to a foundation. A top ring is configured for securing to a wind turbine tower. A bottom ring has an open center and a plurality of radially oriented troughs spaced circumferentially about the open center, with each trough having an outer end. The top ring and the bottom ring are detachable from one another, and the tower base ring assembly is connectable to the foundation. 公开号:DK201300501A 申请号:DK201300501 申请日:2013-09-05 公开日:2014-03-08 发明作者:Cai Ying Xia;Kolar Roman;Gevers William Francis 申请人:Gen Electric; IPC主号:
专利说明:
WIND TURBINE TOWER BASE ASSEMBLY WITH DETACHABLE TOWER BASE RINGS FIELD OF THE INVENTION The present invention relates generally to a tower base ring assembly capable of securing a wind turbine tower to a foundation, and more particularly, to a detachable tower base ring assembly. BACKGROUND OF THE INVENTION Generally, a wind turbine includes a tower, a nacelle mounted on the tower, and a rotor coupled to the nacelle. The rotor typically includes a rotatable hub and a plurality of rotor blades coupled to and extending outwardly of the hub. Each rotor blade may be spaced about the hub so as to facilitate rotating the rotor to enable kinetic energy to be transferred from the wind into usable mechanical energy, and subsequently, electrical energy. The tower typically includes a base section and an upper section. The base section of the tower is secured to a foundation. The foundation may be a concrete slab (raft) foundation, a short pole type foundation, a deep piling foundation, or any other suitable foundation capable of supporting loads produced by wind, turbine operation, and gravitational forces using an anchor cage. A typical interface between the tower base portion and an anchor cage foundation has a bottom T-flange attached to a tower base adapter or a door section. Due to high transportation and manufacturing costs, however, the tower base adapter and the door section are becoming prohibitively expensive. For example, the bottom T-flanges must be welded to the tower base adapter and / or the door section, which requires welding certification. Weld fatigue is a critical factor contributing to increased manufacturing costs. Further, the T-flange of the tower base adapter or the door section increases transportation costs because it exceeds the transportation size limits and restrictions available routes. Additionally, the tower base adapter increases manufacturing costs due to the extra pair of L flanges required to secure the tower base adapter to the base section of the tower. By eliminating the tower base adapter and the door section, thereby eliminating the welded T-flange requirement, the tower outer diameter can be maximized to the transportation limit. Further, eliminating the tower base adapter or the door section allows the tower entry door to be located at a lower height above the foundation, saving costs associated with external stairs and structures. Additionally, the space inside the tower, where the extra pair of L-flanges from the tower base adapter is normally located, would be increased by removing the tower base adapter, thereby allowing easier access to maintenance and electrical equipment. Accordingly, a wind turbine with an improved interface between the base section of the tower and the foundation would be desired in the art. For example, replacing the tower base adapter or door section T-flange with a detachable tower base ring assembly would be advantageous. The present invention, therefore, discloses a detachable tower base ring assembly that secures the L-flange of the base section of the tower to a foundation, which eliminates the need for a welded T-flange and an additional set of L-flanges of the tower. LETTER DESCRIPTION OF THE INVENTION Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention. In one embodiment, a tower base ring assembly for securing a wind turbine tower to a foundation is disclosed. The tower base ring assembly includes two rings: a detachable top ring and a detachable bottom ring. The top ring is connectable to the wind turbine tower. The bottom ring has a plurality of troughs spaced circumferentially about an open center. The troughs extend radially from the open center towards an outer circumferential band of the bottom ring. Each trough has a closed outer circumferential end defined by the band. The troughs provide easy access for installations from inside the tower. The troughs may be formed in the bottom ring by any suitable manufacturing process. For example, in one embodiment, the troughs are milled out of the bottom ring. The width between the outer ends of the troughs and the outer diameter of the ring (e.g., the width of the circumferential band) may vary. For example, the width may be equal to or less than the length of a trough. In other embodiments, the width may be greater than the length of a trough. The plurality of troughs can be any suitable shape, including U-shape, square, circular, triangular, rectangular, quadrilateral, trapezoidal, or similar. [0010] In another embodiment, a tower base ring assembly for securing a wind turbine tower to a foundation includes three rings (a detachable top ring, a detachable middle ring, and detachable bottom ring). In the three-ring embodiment, the top ring is connectable to a wind turbine tower. The middle ring has an open center and is configured between the top ring and the bottom ring. The middle ring has a plurality of apertures spaced circumferentially about the open center. The apertures extend radially from the open center towards an outer diameter of the middle ring. Each aperture has a closed outer end defined by an outer circumferential band that defines the outer diameter of the middle ring and the outer diameter of the aperture. The width between the outer end of each trough and the outer diameter (e.g., the width of the circumferential band) may vary. For example, the width may be equal to or less than the length of an aperture. In other embodiments, the width may be greater than the length of an aperture. The plurality of apertures may be any of the following shapes, including U-shape, square, circular, triangular, rectangular, quadrilateral, trapezoidal, or similar. The middle ring and the bottom ring may be manufactured from the same plate stock; therefore, the plurality of apertures may be cut out of the middle ring without the need to mill out the plurality of troughs in the bottom ring. When assembled, the two-ring configuration and the three-ring configuration provide access for installation and maintenance from inside the tower either through the apertures of the middle ring or the troughs of the bottom ring. In another embodiment, a wind turbine having a nacelle, a tower with an upper section and a base section, and a tower base ring assembly having a detachable two or three-ring configuration is disclosed. The base ring assembly may be in accordance with any one of the embodiments discussed above. [0012] It should be understood that any tower base ring assembly disclosed herein may further include a plurality of openings for various functions. For example, the plurality of openings may be anchor bolt holes, connect bolt holes, screw holes, or any combination thereof. The anchor bolt holes, connect bolt holes, and screw holes may be located on the top ring, the middle ring, the bottom ring, or any combination thereof. The openings of the top ring are configured to align with the openings of the middle ring and the bottom ring when the tower base ring assembly is assembled. The plurality of openings may in any arrangement be appropriate for providing support between the wind turbine tower and the foundation. Further, it should be understood that the diameter of the tower base ring assembly disclosed herein may be wider than the diameter of the wind turbine tower. Additionally, the base section of the tower may include an L flange which is connectable to the top ring of the tower base ring assembly. These and other features, aspects and advantages of the present invention will be better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. LETTER DESCRIPTION OF THE DRAWINGS A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which: [0016] FIG. 1 illustrates a perspective view of one embodiment of a wind turbine according to the present disclosure; FIG. 2 illustrates an elevation view of one embodiment of a tower base ring assembly securing a wind turbine tower to a foundation according to the present disclosure; FIG. 3A illustrates a top view of another embodiment of a tower base ring assembly secured between a wind turbine tower and a foundation according to the present disclosure; FIG. 3B illustrates a cross-sectional view of FIG. 3A at Section A-A according to the present disclosure; FIG. 3C illustrates a cross-sectional view of FIG. 3A at Section B-B according to the present disclosure; FIG. 4 illustrates an elevation view of one embodiment of a tower base ring assembly securing a wind turbine tower to a foundation according to the present disclosure; FIG. 5A illustrates a top view of another embodiment of a tower base ring assembly secured between a wind turbine tower and a foundation according to the present disclosure; FIG. 5B illustrates an elevation view of another embodiment of a tower base ring assembly secured between a wind turbine tower and a foundation according to the present disclosure; FIG. 6 illustrates a top view of a top ring of a tower base ring assembly of a wind turbine according to the present disclosure; FIG. 7 illustrates a top view of a middle ring of a tower base ring assembly of a wind turbine according to the present disclosure; FIG. 8A illustrates a top view of one embodiment of a bottom ring of a tower base ring assembly of a wind turbine according to the present disclosure; FIG. 8B illustrates a top view of another embodiment of a bottom base of a tower base ring assembly of a wind turbine according to the present disclosure; FIG. 9 illustrates a three-dimensional view of a middle ring of a tower base ring assembly of a wind turbine according to the present disclosure; and FIG. 10 illustrates a three-dimensional view of a bottom ring of a tower base ring assembly of a wind turbine according to the present disclosure. DETAILED DESCRIPTION OF THE INVENTION Reference will now be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents. Referring to the drawings, FIG. 1 illustrates a perspective view of one embodiment of a wind turbine 10. As shown, the wind turbine 10 includes a tower 12 extending from a foundation 24, a nacelle 16 mounted on the tower 12, and a rotor 18 coupled to the nacelle 16. The tower 12 includes a base section 17 and an upper section 13. The rotor 18 includes a rotatable hub 20 and at least one rotor blade 22 coupled to and extending outwardly of the hub 20. For example, in the illustrated embodiment, the rotor 18 includes three rotor blades 22. However, in an alternative embodiment, the rotor 18 may include more or less than three rotor blades 22. Each rotor blade 22 may be spaced about the hub 20 to facilitate rotating the rotor 18 to enable kinetic energy transferred from the wind into usable mechanical energy, and subsequently, electrical energy. As shown in FIG. 2, a simplified view of one embodiment of the base section 17 of the tower 12 secured to a foundation 24 by a tower base ring assembly 100 is illustrated. The tower base ring assembly 100 includes a detachable top ring 101 and a detachable bottom ring 102. The base section 17 of the tower 12 is secured to the tower base ring assembly 100 by connect bolts (not shown). The tower base ring assembly 100 is secured to the foundation 24 by anchor bolts 31. Anchor bolts 31 may be located outside of the tower (as shown), inside the tower, or both. Referring to FIGS. 3A and 3B, a top view of a tower 12 secured to a tower base ring assembly 100 is illustrated. The tower base ring assembly 100 includes a detachable top ring 101 and a detachable bottom ring 102. The bottom ring 102 and top ring 101 have an open center 60 with plurality of troughs 110 spaced circumferentially about the center 60. The troughs 110 extend radially from the open center 60 towards a middle diameter of the bottom ring 102. Each trough 110 includes a closed outer end 14 spaced inward from the outer diameter of the ring by a width 15, which may vary between different embodiments. For example, the width 15 may be equal to or less than the length of a trough 110. In other embodiments, the width 15 may be greater than the length of a trough. It should be appreciated that the troughs 110 are not limited by their shape. For example, the troughs may be any U-shape, square, circular, triangular, rectangular, quadrilateral, trapezoidal, or similar shape. For example, in the illustrated embodiment, the troughs 110 are U-shaped. The top ring 101 and the bottom ring 102 may include a plurality of openings 30 used to secure the tower 12 to the tower base ring assembly 100 or to secure the tower to a foundation 24. For example, the plurality of openings 30 may be used for connect bolt holes, anchor bolt holes, screw holes, or any combination thereof. The top ring 101 may be secured to the tower 12 by any appropriate means. Referring to FIGS. 3A, 3B, and 3C, for example, the top ring 101 may be bolted to an L-flange 40 tower by connecting bolts 33. Further, as illustrated, the assembled tower bottom L-flange 40, the top ring 101, and the bottom ring 102 may be connected to the foundation 24 with anchor bolts 31. The anchor bolts 31 may be located inside the tower 12 and / or outside of the tower 12, as particularly illustrated in FIG. 3B. A grout material 50 may be provided to provide further support between the tower base ring assembly 100 and the foundation 24. Referring to FIG. 3C, it can be appreciated that the troughs 110 located in the bottom ring 102 provide access to the flange bolts 33 or nuts for installation and maintenance from inside the tower. The troughs 110 may be manufactured in the bottom ring 102 by any suitable forming means. For example, the troughs 110 may be milled out of the bottom ring 102. Referring to FIG. 4, a simplified view of another embodiment disclosed wherein the tower base ring assembly 100 includes a detachable top ring 101, a detachable middle ring 103, and a detachable bottom ring 102. The tower base ring assembly 100 is secured to the foundation 24 by anchor bolts 31. As illustrated, anchor bolts 31 are outside of tower 12, however, it should be understood by those in the art that anchor bolts 31 may also be disclosed inside of tower 12, or any combination thereof. [0039] As shown in FIGS. 5A and 5B, the tower base ring assembly 100 includes a detachable top ring 101, a detachable middle ring 103, and a detachable bottom ring 102. Rings 101, 102, and 103 are stacked atop one another when assembled, and the assembled tower 12 and tower base ring assembly 100 are secured to foundation 24 by anchor bolts 31. The top ring 101, middle ring 103, and bottom ring 102 have an open center 60 and a plurality of apertures 111 spaced circumferentially about the center 60, with each aperture 111 having a closed outer end 14. The apertures 111 extend radially from the center 60 towards a middle diameter of the middle ring 103, and are offset from the outer diameter of the ring 103 by a width 11, which may vary (as discussed above ). For example, the width 11 may be equal to or less than the length of an aperture 111. In other embodiments, the width 11 may be greater than the length of an aperture. In the illustrated embodiment, the width 11 is approximately equal to the length of the aperture 111. Further, the plurality of apertures 111 may be any of the following shapes: U-shape, square, circular, triangular, rectangular, quadrilateral, trapezoidal, or similar. In the illustrated embodiment, for example, the apertures 111 are U-shaped. As shown in the cross-sectional view of FIG. 5B, the top ring 101 is bolted to a tower L-flange 40 by connect bolts 33. Further, as illustrated, the assembled tower bottom L-flange 40, the top ring 101, the middle ring 103, and the bottom ring 102 are connected to the foundation 24 with pre-stressed anchor bolts 31. A grout material 50 may be provided to provide further support between the tower base ring assembly 100 and the foundation 24. As shown in FIG. 6, an embodiment of a top ring 101 of a tower base ring assembly is disclosed. The top ring 101 is a circular plate having a plurality of openings 30. The plurality of openings may be used to secure the top ring 101 to an L-flange of a wind turbine tower or to a foundation. More specifically, openings 30 may be used for tower base connection bolts, optional screws, and foundation anchor bolts. The dashed lines represent optional locations. However, it should be understood by those skilled in the art that the plurality of openings are not limited to the arrangement illustrated and may be in any arrangement necessary for securing the base of a tower to a tower base ring assembly and / or for securing a tower to a foundation. As shown in FIG. 7, an embodiment of a middle ring 103 of a tower base ring assembly is disclosed. The middle ring 103 is a circular plate with an open center 60 with a plurality of apertures 111 spaced circumferentially about the center 60, with each aperture 111 having an outer end 14. Further, the plurality of apertures 111 extend radially from the open center 60 towards an outer diameter of the middle ring and are offset from the outer diameter by width 11 around a periphery of the middle ring. [0043] It should be understood that this invention includes multiple tower base ring assembly configurations including a two-ring configuration (a top ring and bottom ring) and three-ring configuration (a top ring, a middle ring, and bottom ring). FIG. 8A is one embodiment of a bottom ring 102 of a tower base ring assembly designed for a three-ring configuration, while FIG. 8B is one embodiment of a bottom ring 102 designed for a two-ring configuration. Referring to FIG. 8A, the bottom ring 102 is a circular plate having an open center 60 and a plurality of openings 30. Referring to FIG. 8B, the bottom ring is a circular plate with an open center 60, while a plurality of troughs 110 spaced circumferentially about the center extend radially from the open center 60 toward an outer diameter of the bottom ring. Each trough 110 has an outer end 14, while the outer ends 14 are offset from the outer diameter of the ring by a width 15 around a periphery of the bottom ring. As previously discussed, width 15 may vary. Furthermore, all configurations of the bottom ring 102 include a plurality of openings 30 for securing the tower to the tower base ring assembly and / or securing the tower base ring assembly to a foundation. FIGS. 9 and 10 are three-dimensional views of a portion of the middle ring 103 and a portion of the bottom ring 102, respectively. FIG. 9 is a middle ring 103 with a plurality of apertures 111 spaced circumferentially about the center, with each aperture 111 having an outer end 14. Further, the middle ring 103 has a plurality of openings 30. FIG. 10 is one embodiment of a bottom ring 102 with an open center having a plurality of troughs 110 spaced circumferentially about the center, with each trough 110 having an outer end 14. Further, the bottom ring has a plurality of openings 30. FIGS. 9 and 10 illustrate a difference between the apertures 111 of the middle ring 103, which extend through the depth of the middle ring, versus the troughs 110 of the bottom ring 102, which are milled out and do not extend through the depth of the bottom ring. This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples which occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
权利要求:
Claims (15) [1] 1. A tower base ring assembly for securing a wind turbine tower to a foundation, comprising: a top ring configured for securing to a wind turbine tower; and a bottom ring having an open center, the bottom ring further comprising a plurality of radially oriented troughs spaced circumferentially about the open center, each trough comprising an outer end, wherein the top ring and the bottom ring are detachable from one another, and the tower base ring assembly is connectable to the foundation. [2] 2. The tower base ring assembly of claim 1, wherein the plurality of troughs extend radially from the open center towards an outer diameter of the bottom ring, wherein the outer end of each trough is offset from the outer diameter of the bottom ring by a defined width around the periphery of the bottom ring. [3] 3. The tower base ring assembly of claim 1 or 2, wherein the plurality of troughs are one of the following shapes: U-shape, square, circular, triangular, rectangular, quadrilateral, or trapezoidal, [4] 4. The tower base ring assembly of any of claim 1 to 3, wherein a diameter of the tower base ring assembly is wider than a diameter of the wind turbine tower. [5] 5. The tower base ring assembly of any of claim 1 to 4, wherein the top ring further comprises a plurality of openings, and the bottom ring further comprises a plurality of openings, the openings in the top ring align with the openings in the bottom ring when the tower base ring assembly is assembled. [6] 6. A tower base ring assembly for securing a wind turbine tower to a foundation, comprising: a top ring configured for connecting to a wind turbine tower; a middle ring having an open center, the middle ring comprising a plurality of apertures spaced circumferentially about the open center, the plurality of apertures extending radially from the open center towards an outer diameter of the middle ring, each aperture comprising an outer end that is offset from the outer diameter of the middle ring; and a bottom ring; and wherein the middle ring is coupled between the top ring and the bottom ring, and wherein the top ring, the middle ring, and the bottom ring are detachable from one another, [7] 7. The tower base ring assembly of claim 6, wherein the plurality of apertures are one of the following shapes: U-shape, square, circular, triangular, rectangular, quadrilateral, or trapezoidal. [8] 8. The tower base ring assembly of claim 6 or 7, wherein a diameter of the tower base ring assembly is wider than a diameter of the wind turbine tower. [9] 9. The tower base ring assembly of any of claim 6 to 8, wherein the top ring further comprises a plurality of openings, and the bottom ring further comprises a plurality of openings, the openings in the top ring align with the openings in the bottom ring when the tower base ring assembly is assembled. [10] 10. A wind turbine, comprising: a nacelle; a tower, the tower comprising an upper section and a base section; and a tower base ring assembly, the tower base ring assembly comprising a top ring, the top ring being connected to the base section of the tower; and a bottom ring having an open center; wherein the top ring and the bottom ring are detachable from one another, and the tower base ring assembly is connectable to the foundation. [11] 11. The wind turbine of claim 10, wherein the bottom ring comprises a plurality of troughs spaced circumferentially about the open center, the plurality of troughs extending radially from the open center towards an outer diameter of the bottom ring, each trough comprising an outer end that is offset from the outer diameter of the bottom ring by a defined width around the periphery of the bottom ring. [12] 12. The wind turbine of claim 10 or 11, wherein the tower base ring assembly further comprises a detachable middle ring having an open center. [13] 13. The wind turbine of claim 12, wherein the middle ring comprises a plurality of apertures spaced circumferentially about the open center of the middle ring, the plurality of apertures extending radially from the open center towards an outer diameter of the middle ring, each aperture comprising an outer end that is offset from the outer diameter of the middle ring a defined width around the periphery of the bottom ring. [14] 14. The wind turbine of any of claim 10 to 12 or any of claim 10 to 12 and 13, wherein the base section of the tower comprises an i,-flange connected to the top ring of the tower base ring assembly, [15] 15. The wind turbine of any of claim 10 to 12, or any of claim 10 to 12 and 13, or claim 14 , wherein a diameter of the tower base ring assembly is wider than the diameter of the tower.
类似技术:
公开号 | 公开日 | 专利标题 US8898991B2|2014-12-02|Wind turbine tower base assembly with detachable tower base rings EP2525093B1|2019-07-03|Wind turbine with tower support system and associated method of construction US8443557B2|2013-05-21|Tower base section of a wind turbine, a wind turbine and a system for mounting a tower US9057205B2|2015-06-16|Platform assembly for a wind turbine tower US7877944B2|2011-02-01|Tower foundation, in particular for a wind energy turbine US8839586B2|2014-09-23|Tower section and method for installing tower for wind turbine US20130174509A1|2013-07-11|Platform assembly for a wind turbine tower US20150027068A1|2015-01-29|Tower base assembly for a wind turbine RU2718379C1|2020-04-02|Connecting element for connecting sections of tower, section of tower, tower, wind-driven power plant, as well as method of making tower section and method of connecting sections of tower CA2995146C|2021-06-08|Wind turbine foundation with concrete foundation pedestal EP3290692B1|2019-02-13|Wind-turbine tower, wind turbine, and method of assembling wind-turbine tower US20160305405A1|2016-10-20|Wind turbine comprising a segmented tower and foundation US9777705B2|2017-10-03|Method for re-indexing a pitch bearing of a wind turbine US10472792B2|2019-11-12|Tower flange for a wind turbine EP3699360A1|2020-08-26|Method of connecting a tower to a foundation US20220042490A1|2022-02-10|Wind turbine tower segment for a wind turbine tower and method EP2924282A1|2015-09-30|Reinforcement of a wind turbine tower US9644386B2|2017-05-09|Connection between lattice tower and nacelle CN210263121U|2020-04-07|Tower foundation structure and wind generating set KR102045581B1|2019-11-15|Tower for wind power generator using multiple pipe US20180328343A1|2018-11-15|Tower Assembly for a Wind Turbine KR101523711B1|2015-05-28|Tpwer suppurt structure
同族专利:
公开号 | 公开日 DK178363B1|2016-01-11| US8898991B2|2014-12-02| US20140069046A1|2014-03-13| DE102013109765B4|2017-03-16| DE102013109765A1|2014-05-28|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US3645057A|1970-10-13|1972-02-29|Seymour M Kaplan|Base for mounting a traffic light pole in rotatable and vertically adjustable relation| US3671738A|1971-01-13|1972-06-20|Robert W Beachley|Lighting standard or pole with doubly hinged base| US3837752A|1973-01-26|1974-09-24|J Shewchuk|Coupling for break away pole bases| US4469956A|1983-01-24|1984-09-04|U.S. Windpower, Inc.|Windmill support structure| CA1245827A|1985-05-14|1988-12-06|John Shewchuk|Coupling component for breakaway pole bases| CA1298058C|1987-04-15|1992-03-31|Peter Shewchuk|Threaded mounting for extruded pole| US5481835A|1989-05-12|1996-01-09|Adian Engineering Corporation|Breakaway base and upper-separation joint| CA2424334C|2000-09-27|2008-07-22|Allan P. Henderson|Perimeter weighted foundation for wind turbines and the like| US6532700B1|2000-11-09|2003-03-18|Beaird Industries, Inc.|Flange with cut for wind tower| US20030196393A1|2002-04-22|2003-10-23|Bowman Joseph M.|Weldless pole mounting structure and method of providing same| US6918213B2|2002-04-29|2005-07-19|Stallion Fence Accessories|Plastic pergola end caps of extended length| US6868641B2|2002-05-01|2005-03-22|Michael D. Conner|Breakaway post base| US7052399B2|2003-10-21|2006-05-30|Torque-Traction Technologies Llc|Elastomeric coupling for rotating shafts| DE102004017008B4|2004-04-02|2009-10-22|Aloys Wobben|Method for erecting a tower| US7533506B2|2006-01-11|2009-05-19|Platt Robert E|Bracket for mounting and vertically leveling a post on a surface| US8051627B2|2006-04-30|2011-11-08|General Electric Company|Tower adapter, method of producing a tower foundation and tower foundation| US8164210B2|2007-03-07|2012-04-24|Boone Daniel N|Vertical axis wind turbine with angled braces| US20100101173A1|2008-01-04|2010-04-29|General Electric Company|Wind turbine tower joints| US20100024311A1|2008-07-30|2010-02-04|Dustin Jon Wambeke|Wind turbine assembly with tower mount| EP2199469B1|2008-12-16|2012-06-06|Vestas Wind Systems A/S|Foundation for enabling anchoring of a wind turbine tower thereto by means of replaceable through-bolts| CA2647804A1|2008-12-23|2010-06-23|Organoworld Inc.|Wind turbine tower and method for building the same| US8490337B2|2009-06-09|2013-07-23|Thomas Nott Word, III|Structural flange connection system and method| US20120260592A1|2009-10-22|2012-10-18|Amsc Windtec Gmbh|Foundation fixing unit, wind energy converter, and method for fixing a tower of a wind energy converter onto a foundation| US9080306B2|2010-03-24|2015-07-14|Vestas Wind Systems A/S|Method of laying a foundation of a tower construction| DE102010003879B4|2010-04-12|2012-02-23|Aloys Wobben|Wind turbine azimuth or pitch drive| US9004875B2|2011-03-11|2015-04-14|General Electric Company|Flange and wind energy system| WO2013097865A1|2011-12-28|2013-07-04|Vestas Wind Systems A/S|A ring segment for a flange of a wind turbine tower|US8938923B2|2011-06-29|2015-01-27|Oldcastle Precast, Inc.|Prefabricated concrete pole base and adjustable connector| US9284744B2|2012-08-07|2016-03-15|Oldcastle Precast, Inc.|Modular concrete pole base| WO2014069317A1|2012-10-30|2014-05-08|日立機材株式会社|Column leg hardware and column leg structure using same| WO2014075686A1|2012-11-15|2014-05-22|Vestas Wind Systems A/S|Method and device for aligning tower sections| GB2513577B|2013-04-29|2017-11-08|Mccue Int Inc|Opening protection system| DE102013105512A1|2013-05-29|2014-12-04|Max Bögl Wind AG|Concrete foundation and method for producing a concrete foundation for a wind power tower and positioning device for positioning of ducts in a concrete foundation| US9255408B2|2014-03-17|2016-02-09|Hitachi Metals Techno, Ltd.|Column structure and base member| WO2015140893A1|2014-03-17|2015-09-24|日立機材株式会社|Column structure| WO2015140890A1|2014-03-17|2015-09-24|日立機材株式会社|Column structure and base member| WO2015140892A1|2014-03-17|2015-09-24|日立機材株式会社|Column structure and base member| EP2998569B1|2014-09-22|2017-08-02|Siemens Aktiengesellschaft|Arrangement to align a part of a wind turbine| US10066781B2|2015-04-15|2018-09-04|Parasoleil|Architectural panel support| US20180155951A1|2015-05-29|2018-06-07|Tindall Corporation|Method and apparatus for constructing a concrete tower| DE102015216444A1|2015-08-27|2017-03-02|Wobben Properties Gmbh|Wind turbine| DE102015014070A1|2015-10-30|2017-05-04|Senvion Gmbh|Wind energy plant, load distribution system of a wind turbine and method for erecting a tower of a wind turbine| WO2018086022A1|2016-11-10|2018-05-17|General Electric Company|Methods and apparatus for refurbishing wind turbine foundations| US10472792B2|2017-05-16|2019-11-12|General Electric Company|Tower flange for a wind turbine| US10823629B2|2018-04-12|2020-11-03|General Electric Company|System and method for monitoring fastener tension| DE102019109904A1|2019-04-15|2020-10-15|Wobben Properties Gmbh|Tower segment and method of building a tower|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US201213606177|2012-09-07| US13/606,177|US8898991B2|2012-09-07|2012-09-07|Wind turbine tower base assembly with detachable tower base rings| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|